Digging down to understand deforestation’s impacts on ecosystem services from soil.

Dr Alison Cameron
LEAD AUTHORS: Alison Cameron, Ilja van Meerveld, Herintsitohaina Razakamanarivo

BIODIVERSITY: Elizabeth Finch, Tancredi Caruso, Christian Randrianantoandro, Raphali Andriatsimanarilafy

HYDROLOGY: Ravelona Maafaka, Bob Zwartendijk, Chandra Ghimire, Jaona Lahitiana, Mark Mulligan, Sampurno Bruijnzeel

CARBON: Tantely Razafimbelo, Andry Andriamananjara, Nantenaina Ramboatiana, Riana Andriasoa, Hery Razafimahatratra

REMOTE SENSING: Jennifer Hewson, Rasolohery Andriambolantsoa
Aim: To influence the development and implementation of international ecosystem service payment schemes (e.g. REDD+) in the interests of poverty alleviation.
Slash & Burn Agriculture in E Madagascar

Upland Rice Yields t/ha

Indigenous Category: Ala Vadikatana Savoka / Dedeka Roranga Tany Maty

Fallow cycles after deforestation: 1st 2nd 3rd 4th 5th 6th 7th

Slash & Burn Agriculture in E Madagascar

SOILS AND LAND PLAY A FUNDAMENTAL AND CROSS-CUTTING ROLE IN ACHIEVING THE SDGs*

- **SDG 1:** End poverty
- **SDG 2:** Achieve food security
- **SDG 3:** Healthy lives for all
- **SDG 5:** Gender equality
- **SDG 6:** Water for all
- **SDG 7:** Energy for all
- **SDG 11:** Cities
- **SDG 13:** Combat climate change
- **SDG 15:** Protect terrestrial ecosystems

Basic soil and land services that must be protected:
- Carbon storage and contribution to climate change mitigation
- Water regulation
- Nutrient provision and cycling for crop/forest growth and other ecosystems
- Maintaining biodiversity

Changes in land use and cover, resulting in sustainable use
- Halting deforestation, land and soil degradation, and biodiversity loss
- Preventing soil sealing

Promoting sustainable agriculture and food systems
- Increased production and consumption of biomass for food, feed, fibre, and fuel
Study sites

- **ZOI 1** - Carbon Only
- **ZOI 2** - 11/21 sites
- **ZOI 3** - 9/9 sites
- **ZOI 4** - 0/15 sites
Biomass

BAU sites

Intervention sites

Time since closed canopy forest disturbance

Closed > < Tree Fallow
Dominated by trees, usually only one or two cycles

< < Shrub Fallow
Dominated by shrubs, declining biomass

< < Degraded Land
Dominated by grasses.

n=20 Sites
There will be 45
WP2: Hydrology Sampling
WP₄: Carbon Sampling
Site Level Sampling Design

Legend:
- * Entomology (small) and Herpetology (bucket) pitfall traps
- ▢ Butterfly traps
- ▲ Carbon soil samples
- — Carbon measurement circles
- — Nocturnal Herpetology transects
- ■ Leaf litter samples
- ◆ A, Soil cores, soil biodiversity and infiltration methods
- ▪ B, A + dye experiment

Dimensions given in metres
Hydrological Variables

- Transect aspect Degrees
- Transect slope Degrees
- Hydraulic Conductivity (Ksat) 0-10 cm [mm/hr]
- Bulk density [g/cm³] 12.5 to 17.5 cm
- Porosity [%] 12.5 to 17.5 cm
- Moisture content at field capacity [%] 12.5 to 17.5 cm
- Drainable porosity [%] 12.5 to 17.5 cm
- Root/litter layer cm above the soil surface
- Max. rooting depth cm below the soil surface
Below ground

Hydrology

Soil Surface Infiltration (m/day)

Carbon

Carbon Stock (MgC/ha⁻¹)

Biodiversity

No. of Soil Invertebrates

Land Use Codes
CC = Closed Canopy
TF = Tree Fallow
SF = Shrub Fallow
Deg = Degraded
RF = Reforested
When we have a lot of variables, we can use Multi-variate statistics to explore relationships between variables.
Example similarity matrix (20 sites x 20 sites)
Envl = Eclidian Distance
Bio = Bray Curtis Distance
Principal Component Analysis (PCA)

Determining principal components of the variation within individual multi-variate data sets

NOT A TEST OF SIGNIFICANCE
Principal Component Analysis Carbon (4 Variables)

EIGENVECTORS

<table>
<thead>
<tr>
<th></th>
<th>PC1</th>
<th>PC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABG</td>
<td>-0.064</td>
<td>0.800</td>
</tr>
<tr>
<td>Sapling</td>
<td>0.337</td>
<td>0.574</td>
</tr>
<tr>
<td>SOC 0-30</td>
<td>-0.669</td>
<td>0.042</td>
</tr>
<tr>
<td>SOC 0-100</td>
<td>-0.660</td>
<td>0.172</td>
</tr>
</tbody>
</table>
Principal Component Analysis Carbon (4 Variables)

<table>
<thead>
<tr>
<th>Site</th>
<th>EIGENVECTORS</th>
<th>PC1</th>
<th>PC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABG</td>
<td>-0.064</td>
<td>0.800</td>
<td></td>
</tr>
<tr>
<td>Sapling</td>
<td>0.337</td>
<td>0.574</td>
<td></td>
</tr>
<tr>
<td>SOC 0-30</td>
<td>-0.669</td>
<td>0.042</td>
<td></td>
</tr>
<tr>
<td>SOC 0-100</td>
<td>-0.660</td>
<td>0.172</td>
<td></td>
</tr>
</tbody>
</table>
Principal Component Analysis Carbon (4 Variables)

EIGENVECTORS

<table>
<thead>
<tr>
<th>LandUse</th>
<th>PC1</th>
<th>PC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed Canopy</td>
<td>0.064</td>
<td>0.800</td>
</tr>
<tr>
<td>Tree Fallow</td>
<td>0.337</td>
<td>0.574</td>
</tr>
<tr>
<td>Shrub Fallow</td>
<td>-0.669</td>
<td>0.042</td>
</tr>
<tr>
<td>Degraded</td>
<td>-0.660</td>
<td>0.172</td>
</tr>
<tr>
<td>Reforested</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PC1 (51%)
PC2 (29%)
Principal Component Ordination (PCO)

CAN USE PERMANOVA TO TEST FOR DIFFERENCES BETWEEN GROUPS AND INTERACTIONS
Principal Component Ordination Carbon (4 Variables)

PERMANOVA RESULT

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>Pseudo-F</th>
<th>P(perm)</th>
<th>Unique permutations</th>
<th>P(MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td>4</td>
<td>35.08</td>
<td>8.77</td>
<td>14.14</td>
<td>0.024</td>
<td>998</td>
<td>0.052</td>
</tr>
<tr>
<td>LU</td>
<td>1</td>
<td>15.23</td>
<td>15.23</td>
<td>4.243</td>
<td>0.026</td>
<td>999</td>
<td>0.03</td>
</tr>
<tr>
<td>ZOI x Site</td>
<td>0</td>
<td>0</td>
<td>15.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOI x LU</td>
<td>0</td>
<td>0</td>
<td>4.243</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site x LU</td>
<td>4</td>
<td>14.36</td>
<td>3.589</td>
<td>5.785</td>
<td>0.065</td>
<td>991</td>
<td>0.077</td>
</tr>
<tr>
<td>ZOI x Site x LU</td>
<td>0</td>
<td>0</td>
<td>3.589</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Res</td>
<td>1</td>
<td>0.62</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>171.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LandUse
- Closed Canopy
- Tree Fallow
- Shrub Fallow
- Degraded
- Reforested

Normalise Resemblance: D1 Euclidean distance
Principal Component Ordination Hydrology (9 Variables)

PERMANOVA RESULT

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>Pseudo-F</th>
<th>P(perm)</th>
<th>Unique permutations</th>
<th>P(MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No test</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td>4</td>
<td>37.368</td>
<td>9.3419</td>
<td>5.7199</td>
<td>0.023</td>
<td>998</td>
<td>0.039</td>
</tr>
<tr>
<td>LU</td>
<td>1</td>
<td>3.1892</td>
<td>3.1892</td>
<td>0.38237</td>
<td>0.864</td>
<td>999</td>
<td>0.832</td>
</tr>
<tr>
<td>ZOI x Site</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No test</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ZOI x LU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No test</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Site x LU</td>
<td>4</td>
<td>33.362</td>
<td>8.3405</td>
<td>5.1067</td>
<td>0.0575</td>
<td>991</td>
<td>0.078</td>
</tr>
<tr>
<td>ZOI x Site x LU*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No test</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Res</td>
<td>1</td>
<td>1.6332</td>
<td>1.6332</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LandUse

- Closed Canopy
- Tree Fallow
- Shrub Fallow
- Degraded
- Reforested

Normalise Resemblance: D1 Euclidean distance
Principal Component Ordination Biodiversity (17 Variables)

PERMANOVA RESULT

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>Pseudo-F (perm)</th>
<th>P(MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No test</td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td>4</td>
<td>2186</td>
<td>546.5</td>
<td>0.226</td>
<td>999</td>
</tr>
<tr>
<td>LU</td>
<td>1</td>
<td>89.39</td>
<td>89.39</td>
<td>0.515</td>
<td>997</td>
</tr>
<tr>
<td>ZOI x Site</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No test</td>
<td></td>
</tr>
<tr>
<td>ZOI x LU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No test</td>
<td></td>
</tr>
<tr>
<td>Site x LU</td>
<td>4</td>
<td>407.9</td>
<td>102</td>
<td>0.763</td>
<td>993</td>
</tr>
<tr>
<td>ZOI x Site x LU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No test</td>
<td></td>
</tr>
<tr>
<td>Res</td>
<td>1</td>
<td>163.1</td>
<td>163.1</td>
<td>0.775</td>
<td></td>
</tr>
</tbody>
</table>

Total 19 7023

LandUse

- Closed Canopy
- Tree Fallow
- Shrub Fallow
- Degraded
- Reforested

Transform: Square root
Resemblance: S17 Bray-Curtis similarity
Exploring relationships between two multi-variate data sets

A) Test (“Relate”) Patterns in 2 Similarity Matrices
Example similarity matrix (20 sites x 20 sites)

Envl = Eclidian Distance

Bio = Bray Curtis Distance
Exploring relationships between two multi-variate data sets

A) Test ("Relate") Patterns in 2 Similarity Matrices
B) Distance Based Linear Models of Biological Data from Physical Data
Distance Based Linear Model: Relationship between Biodiversity and Carbon

Spearman’s Rank Correlation
Rho 0.267 (weak)
Significance 0.04% (significant)

Three variables identified as significant individual predictors

<table>
<thead>
<tr>
<th>Variable</th>
<th>SS(trace)</th>
<th>Pseudo-F</th>
<th>P</th>
<th>Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sapling</td>
<td>2820.8</td>
<td>2.911</td>
<td>0.027</td>
<td>0.13921</td>
</tr>
<tr>
<td>SOC 0-30</td>
<td>4072.3</td>
<td>4.5274</td>
<td>0.005</td>
<td>0.20097</td>
</tr>
<tr>
<td>SOC 0-100</td>
<td>2830.2</td>
<td>2.9224</td>
<td>0.027</td>
<td>0.13968</td>
</tr>
<tr>
<td>ABG</td>
<td>543.79</td>
<td>0.49639</td>
<td>0.765</td>
<td>0.026837</td>
</tr>
</tbody>
</table>

Best model is a 1 variable model including
SOC 0-30 Trial AIC=138.63

Spearman’s Rank Correlation
Rho 0.267 (weak)
Significance 0.04% (significant)
Distance Based Linear Model: Relationship between Biodiversity and Hydrology

Spearman’s Rank Correlation
Rho 0.224 (weak)
Significance 1.2% (significant)

Only one of 9 variables identified as significant individual predictor
Max. rooting depth cm below the soil surface \(P=0.003 \)

Best model is a 2 variable model including
Bulk density [g/cm³] 12.5 to 17.5 cm
Max. rooting depth cm below the soil surface \(AIC = 115.19 \)
Annual Report: The importance of soils and soil processes is being recognised in a growing number of projects.
Species loss as a driver of global environmental change
Next steps

▪ Include more sites (from 20 to 45)
▪ Account for spatial autocorrelation
▪ Split sites into degrading/recovering
▪ Explore above <> below ground relationships
▪ Include more carbon variables (e.g. dead wood)
▪ Higher resolution on biodiversity (meta-genomics)
▪ Functional diversity
Acknowledgements